On Fredholm eigenvalue problem for plane domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of methods for the numerical solution of the Fredholm integral eigenvalue problem

The computational efficiency of random field representations with the Karhunen-Loève expansion relies on the numerical solution of a Fredholm integral eigenvalue problem. In this contribution, different methods for this task are compared. These include the finite element method (FEM), the finite cell method (FCM) and the Nyström method. For the FEM with linear basis functions, two different app...

متن کامل

Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem

Elementary plane rotations are one of the building blocks of numerical linear algebra and are employed in reducing matrices to condensed form for eigenvalue computations and during the QR algorithm. Unfortunately, their implementation in standard packages such as EISPACK, the BLAS and LAPACK lack the continuity of their mathematical formulation, which makes results from software that use them s...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Fredholm Eigenvalue for a Quasi-circle and Grunsky Functionals

We give several new formulas of the least positive Fredholm eigenvalue for a quasicircle, answering a problem posed recently by Kühnau. During the proof, we show that the Grunsky functionals corresponding to the two complementary domains of the quasi-circle are the same and equal to the reciprocal of the Fredholm eigenvalue.

متن کامل

A Singularly Perturbed Linear Eigenvalue Problem in C1 Domains

where ν is the outward unit normal vector on ∂Ω; ν exists a.e. for Lipschitz domains. The goal of this paper is to understand the asymptotic behavior of Λ(γ) as γ → ∞ when ∂Ω ∈ C1. Since Λ(γ) → ∞ when γ → ∞, (2) can be viewed as a singularly perturbed linear eigenvalue problem. The asymptotic behavior of Λ(γ) was first studied by Lacey, Ockendon and Sabina in [3], where they investigated some r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1961

ISSN: 0386-5991

DOI: 10.2996/kmj/1138844400